/dev/reading

MLOps Engineering at Scale

by Carl Osipov
The cover of MLOps Engineering at Scale
4/5 on Goodreads
ISBN 9781617297762
Published in 2022
344 pages

Description

Dodge costly and time-consuming infrastructure tasks, and rapidly bring your machine learning models to production with MLOps and pre-built serverless tools!

In MLOps Engineering at Scale you will learn:

  • Extracting, transforming, and loading datasets
  • Querying datasets with SQL
  • Understanding automatic differentiation in PyTorch
  • Deploying model training pipelines as a service endpoint
  • Monitoring and managing your pipeline’s life cycle
  • Measuring performance improvements

MLOps Engineering at Scale shows you how to put machine learning into production efficiently by using pre-built services from AWS and other cloud vendors. You’ll learn how to rapidly create flexible and scalable machine learning systems without laboring over time-consuming operational tasks or taking on the costly overhead of physical hardware. Following a real-world use case for calculating taxi fares, you will engineer an MLOps pipeline for a PyTorch model using AWS server-less capabilities.

Categories