Deliver huge improvements to your machine learning pipelines without spending hours fine-tuning parameters! This book’s practical case studies reveal feature engineering techniques that upgrade your data wrangling—and your ML results.
In Feature Engineering Bookcamp you will learn how to:
- Identify and implement feature transformations for your data
- Build powerful machine learning pipelines with unstructured data like text and images
- Quantify and minimize bias in machine learning pipelines at the data level
- Use feature stores to build real-time feature engineering pipelines
- Enhance existing machine learning pipelines by manipulating the input data
- Use state-of-the-art deep learning models to extract hidden patterns in data
Feature Engineering Bookcamp guides you through a collection of projects that give you hands-on practice with core feature engineering techniques. You’ll work with feature engineering practices that speed up the time it takes to process data and deliver real improvements in your model’s performance. This instantly-useful book skips the abstract mathematical theory and minutely-detailed formulas; instead you’ll learn through interesting code-driven case studies, including tweet classification, COVID detection, recidivism prediction, stock price movement detection, and more.