/dev/reading

Bayesian Optimization in Action

by Quan Nguyen
The cover of Bayesian Optimization in Action
5/5 on Goodreads
ISBN 9781633439078
Published in 2023
424 pages

Description

Bayesian optimization helps pinpoint the best configuration for your machine learning models with speed and accuracy. Put its advanced techniques into practice with this hands-on guide.

In Bayesian Optimization in Action you will learn how to:

  • Train Gaussian processes on both sparse and large data sets
  • Combine Gaussian processes with deep neural networks to make them flexible and expressive
  • Find the most successful strategies for hyperparameter tuning
  • Navigate a search space and identify high-performing regions
  • Apply Bayesian optimization to cost-constrained, multi-objective, and preference optimization
  • Implement Bayesian optimization with PyTorch, GPyTorch, and BoTorch

Bayesian Optimization in Action shows you how to optimize hyperparameter tuning, A/B testing, and other aspects of the machine learning process by applying cutting-edge Bayesian techniques. Using clear language, illustrations, and concrete examples, this book proves that Bayesian optimization doesn’t have to be difficult! You’ll get in-depth insights into how Bayesian optimization works and learn how to implement it with cutting-edge Python libraries. The book’s easy-to-reuse code samples let you hit the ground running by plugging them straight into your own projects.