/dev/reading

Automated Machine Learning in Action

by Qingquan Song, Haifeng Jin and Xia Hu
The cover of Automated Machine Learning in Action
5/5 on Goodreads
ISBN 9781617298059
Published in 2022
336 pages

Description

Optimize every stage of your machine learning pipelines with powerful automation components and cutting-edge tools like AutoKeras and KerasTuner.

In Automated Machine Learning in Action you will learn how to:

  • Improve a machine learning model by automatically tuning its hyperparameters
  • Pick the optimal components for creating and improving your pipelines
  • Use AutoML toolkits such as AutoKeras and KerasTuner
  • Design and implement search algorithms to find the best component for your ML task
  • Accelerate the AutoML process with data-parallel, model pretraining, and other techniques

Automated Machine Learning in Action reveals how you can automate the burdensome elements of designing and tuning your machine learning systems. It’s written in a math-lite and accessible style, and filled with hands-on examples for applying AutoML techniques to every stage of a pipeline. AutoML can even be implemented by machine learning novices! If you’re new to ML, you’ll appreciate how the book primes you on machine learning basics. Experienced practitioners will love learning how automated tools like AutoKeras and KerasTuner can create pipelines that automatically select the best approach for your task, or tune any customized search space with user-defined hyperparameters, which removes the burden of manual tuning.